Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Chinese Journal of Biotechnology ; (12): 2772-2793, 2023.
Article in Chinese | WPRIM | ID: wpr-981232

ABSTRACT

Sweet potato is an important food crop that can also be used as an industrial raw material. Sucrose is the main form of long-distance carbohydrate transport in plants, and sucrose transporter (SUT) regulates the transmembrane transport and distribution of sucrose during plant growth and metabolism. Moreover, SUT plays a key role in phloem mediated source-to-sink sucrose transport and physiological activities, supplying sucrose for the sink tissues. In this study, the full-length cDNA sequences of IbSUT62788 and IbSUT81616 were obtained by rapid amplification of cDNA ends (RACE) cloning according to the transcripts of the two SUT coding genes which were differentially expressed in sweet potato storage roots with different starch properties. Phylogenetic analysis was performed to clarify the classification of IbSUT62788 and IbSUT81616. The subcellular localization of IbSUT62788 and IbSUT81616 was determined by transient expression in Nicotiana benthamiana. The function of IbSUT62788 and IbSUT81616 in sucrose and hexose absorption and transport was identified using yeast functional complementarity system. The expression pattern of IbSUT62788 and IbSUT81616 in sweet potato organs were analyzed by real-time fluorescence quantitative PCR (RT-qPCR). Arabidopsis plants heterologous expressing IbSUT62788 and IbSUT81616 genes were obtained using floral dip method. The differences in starch and sugar contents between transgenic and wild-type Arabidopsis were compared. The results showed IbSUT62788 and IbSUT81616 encoded SUT proteins with a length of 505 and 521 amino acids, respectively, and both proteins belonged to the SUT1 subfamily. IbSUT62788 and IbSUT81616 were located in the cell membrane and were able to transport sucrose, glucose and fructose in the yeast system. In addition, IbSUT62788 was also able to transport mannose. The expression of IbSUT62788 was higher in leaves, lateral branches and main stems, and the expression of IbSUT81616 was higher in lateral branches, stems and storage roots. After IbSUT62788 and IbSUT81616 were heterologously expressed in Arabidopsis, the plants grew normally, but the biomass increased. The heterologous expression of IbSUT62788 increased the soluble sugar content, leaf size and 1 000-seed weight of Arabidopsis plants. Heterologous expression of IbSUT81616 increased starch accumulation in leaves and root tips and 1 000-seed weight of seeds, but decreased soluble sugar content. The results obtained in this study showed that IbSUT62788 and IbSUT81616 might be important genes regulating sucrose and sugar content traits in sweet potato. They might carry out physiological functions on cell membrane, such as transmembrane transport of sucrose, sucrose into and out of sink tissue, as well as transport and unloading of sucrose into phloem. The changes in traits result from their heterologous expression in Arabidopsis indicates their potential in improving the yield of other plants or crops. The results obtained in this study provide important information for revealing the functions of IbSUT62788 and IbSUT81616 in starch and glucose metabolism and formation mechanism of important quality traits in sweet potato.


Subject(s)
Ipomoea batatas/metabolism , Arabidopsis/metabolism , Sucrose/metabolism , Saccharomyces cerevisiae/metabolism , DNA, Complementary , Phylogeny , Plants, Genetically Modified/genetics , Membrane Transport Proteins/metabolism , Starch/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
China Journal of Chinese Materia Medica ; (24): 3132-3139, 2023.
Article in Chinese | WPRIM | ID: wpr-981448

ABSTRACT

Strigolactones(SLs) are a class of sesquiterpenoids derived from the carotenoid biosynthesis pathway with the core carbon skeleton consisting of tricyclic lactone(ABC tricyclic ring) and α,β-unsaturated furan ring(D ring). SLs are widely distributed in higher plants and are symbiotic signals between plants and Arbuscular mycorrhiza(AM), which play key roles in the evolution of plant colonizing terrestrial habitats. As a new type of plant hormone, SLs possess such important biological functions as inhibiting shoot branching(tillers), regulating root architecture, promoting secondary growth, and improving plant stress resistance. Therefore, SLs have attracted wide attention. The biological functions of SLs are not only closely related to the formation of "excellent shape and quality" of Chinese medicinal materials but also have important practical significance for the production of high-quality medicinal materials. However, SLs have been currently widely studied in model plants and crops such as Oryza sativa and Arabidopsis thaliana, and few related studies have been reported on SLs in medicinal plants, which need to be strengthened. This review focused on the latest research progress in the isolation and identification, biological and artificial synthesis pathways, biosynthesis sites and transport modes, signal transduction pathways and mechanisms, and biological functions of SLs, and prospected the research on the regulation mechanism of SLs in the growth and development of medicinal plants and their related application on targeted regulation of Chinese herbal medicine production, which is expected to provide some references for the in-depth research on SLs in the field of Chinese medicinal resources.


Subject(s)
Arabidopsis , Lactones , Plants, Medicinal
3.
China Journal of Chinese Materia Medica ; (24): 1510-1517, 2023.
Article in Chinese | WPRIM | ID: wpr-970622

ABSTRACT

Chalcone isomerase is a key rate-limiting enzyme in the biosynthesis of flavonoids in higher plants, which determines the production of flavonoids in plants. In this study, RNA was extracted from different parts of Isatis indigotica and reverse-transcribed into cDNA. Specific primers with enzyme restriction sites were designed, and a chalcone isomerase gene was cloned from I. indigotica, named IiCHI. IiCHI was 756 bp in length, containing a complete open reading frame and encoding 251 amino acids. Homology analysis showed that IiCHI was closely related to CHI protein of Arabidopsis thaliana and had typical active sites of chalcone isomerase. Phylogenetic tree analysis showed that IiCHI was classified into type Ⅰ CHI clade. Recombinant prokaryotic expression vector pET28a-IiCHI was constructed and purified to obtain IiCHI recombinant protein. In vitro enzymatic analysis showed that the IiCHI protein could convert naringenin chalcone into naringenin, but could not catalyze the production of liquiritigenin by isoliquiritigenin. The results of real-time quantitative polymerase chain reaction(qPCR) showed that the expression level of IiCHI in the aboveground parts was higher than that in the underground parts and the expression level was the highest in the flowers of the aboveground parts, followed by leaves and stems, and no expression was observed in the roots and rhizomes of the underground parts. This study has confirmed the function of chalcone isomerase in I. indigotica and provided references for the biosynthesis of flavonoid components.


Subject(s)
Isatis/genetics , Plant Proteins/metabolism , Phylogeny , Arabidopsis/genetics , Flavonoids , Cloning, Molecular
4.
China Journal of Chinese Materia Medica ; (24): 939-950, 2023.
Article in Chinese | WPRIM | ID: wpr-970565

ABSTRACT

WRKY transcription factor family plays an important role in plant growth and development, secondary metabolite synthesis, and biotic and abiotic stress responses. The present study performed full-length transcriptome sequencing of Polygonatum cyrtonema by virtue of the PacBio SMRT high-throughput platform, identified the WRKY family by bioinformatics methods, and analyzed the physicochemical properties, subcellular localization, phylogeny, and conserved motifs. The results showed that 30.69 Gb nucleotide bases and 89 564 transcripts were obtained after redundancy removal. These transcripts had a mean length of 2 060 bp and an N50 value of 3 156 bp. Based on the full-length transcriptome sequencing data, 64 candidate proteins were selected from the WRKY transcription factor family, with the protein size of 92-1 027 aa, the relative molecular mass of 10 377.85-115 779.48 kDa, and the isoelectric point of 4.49-9.84. These WRKY family members were mostly located in the nucleus and belonged to the hydrophobic proteins. According to the phylogenetic analysis of WRKY family in P. cyrtonema and Arabidopsis thaliana, all WRKY family members were clustered into seven subfamilies and WRKY proteins from P. cyrtonema were distributed in different numbers in these seven subgroups. Expression pattern analysis confirmed that 40 WRKY family members had distinct expression patterns in the rhizomes of 1-and 3-year-old P. cyrtonema. Except for PcWRKY39, the expression of 39 WRKY family members was down-regulated in 3-year-old samples. In conclusion, this study provides abundant reference data for genetic research on P. cyrtonema and lays a foundation for the in-depth investigation of the biological functions of the WRKY family.


Subject(s)
Transcription Factors , Polygonatum , Phylogeny , Transcriptome , Gene Expression Regulation , Arabidopsis
5.
Chinese Journal of Biotechnology ; (12): 724-740, 2023.
Article in Chinese | WPRIM | ID: wpr-970403

ABSTRACT

SUN gene is a group of key genes regulating plant growth and development. Here, SUN gene families of strawberry were identified from the genome of the diploid Fragaria vesca, and their physicochemical properties, genes structure, evolution and genes expression were also analyzed. Our results showed that there were thirty-one FvSUN genes in F. vesca and the FvSUNs encoded proteins were classified into seven groups, and the members in the same group showed high similarity in gene structures and conservative motifs. The electronic subcellular localization of FvSUNs was mainly in the nucleus. Collinearity analysis showed that the members of FvSUN gene family were mainly expanded by segmental duplication in F. vesca, and Arabidopsis and F. vesca shared twenty-three pairs of orthologous SUN genes. According to the expression pattern in different tissues shown by the transcriptome data of F. vesca, the FvSUNs gene can be divided into three types: (1) expressed in nearly all tissues, (2) hardly expressed in any tissues, and (3) expressed in special tissues. The gene expression pattern of FvSUNs was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the seedlings of F. vesca were treated by different abiotic stresses, and the expression level of 31 FvSUNs genes were assayed by qRT-PCR. The expression of most of the tested genes was induced by cold, high salt or drought stress. Our studies may facilitate revealing the biological function and molecular mechanism of SUN genes in strawberry.


Subject(s)
Fragaria/metabolism , Genes, Plant , Stress, Physiological/genetics , Arabidopsis/genetics , Plant Development , Gene Expression Regulation, Plant , Plant Proteins/metabolism
6.
Chinese Journal of Biotechnology ; (12): 653-669, 2023.
Article in Chinese | WPRIM | ID: wpr-970398

ABSTRACT

Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and β-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.


Subject(s)
Arabidopsis/metabolism , Rhododendron/metabolism , Amino Acid Sequence , Anthocyanins/metabolism , Phylogeny , Flavonoids/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins/metabolism
7.
Braz. j. biol ; 83: 1-14, 2023. ilus, tab
Article in English | LILACS, VETINDEX | ID: biblio-1468905

ABSTRACT

Population growth is increasing rapidly around the world, in these consequences we need to produce more foods to full fill the demand of increased population. The world is facing global warming due to urbanizations and industrialization and in this concerns plants exposed continuously to abiotic stresses which is a major cause of crop hammering every year. Abiotic stresses consist of Drought, Salt, Heat, Cold, Oxidative and Metal toxicity which damage the crop yield continuously. Drought and salinity stress severally affected in similar manner to plant and the leading cause of reduction in crop yield. Plants respond to various stimuli under abiotic or biotic stress condition and express certain genes either structural or regulatory genes which maintain the plant integrity. The regulatory genes primarily the transcription factors that exert their activity by binding to certain cis DNA elements and consequently either up regulated or down regulate to target expression. These transcription factors are known as masters regulators because its single transcript regulate more than one gene, in this context the regulon word is fascinating more in compass of transcription factors. Progress has been made to better understand about effect of regulons (AREB/ABF, DREB, MYB, and NAC) under abiotic stresses and a number of regulons reported for stress responsive and used as a better transgenic tool of Arabidopsis and Rice.


O crescimento populacional está aumentando rapidamente em todo o mundo, e para combater suas consequências precisamos produzir mais alimentos para suprir a demanda do aumento populacional. O mundo está enfrentando o aquecimento global devido à urbanização e industrialização e, nesse caso, plantas expostas continuamente a estresses abióticos, que é uma das principais causas do martelamento das safras todos os anos. Estresses abióticos consistem em seca, sal, calor, frio, oxidação e toxicidade de metais que prejudicam o rendimento da colheita continuamente. A seca e o estresse salino são afetados de maneira diversa pela planta e são a principal causa de redução da produtividade das culturas. As plantas respondem a vários estímulos sob condições de estresse abiótico ou biótico e expressam certos genes estruturais ou regulatórios que mantêm a integridade da planta. Os genes reguladores são principalmente os fatores de transcrição que exercem sua atividade ligando-se a certos elementos cis do DNA e, consequentemente, são regulados para cima ou para baixo para a expressão alvo. Esses fatores de transcrição são conhecidos como reguladores mestres porque sua única transcrição regula mais de um gene; nesse contexto, a palavra regulon é mais fascinante no âmbito dos fatores de transcrição. Progresso foi feito para entender melhor sobre o efeito dos regulons (AREB / ABF, DREB, MYB e NAC) sob estresses abióticos e uma série de regulons relatados como responsivos ao estresse e usados como uma melhor ferramenta transgênica de Arabidopsis e Rice.


Subject(s)
Arabidopsis , Stress, Physiological , Salt Stress , Genes, Regulator , Regulon , Droughts
8.
Chinese Journal of Biotechnology ; (12): 1915-1928, 2022.
Article in Chinese | WPRIM | ID: wpr-927827

ABSTRACT

In this study, the effects of two plant growth-promoting bacteria Klebsiella michiganensis TS8 and Lelliottia Jeotgali MR2 on the growth and cadmium (Cd) uptake of Arabidopsis thaliana under Cd stress were explored. A wild-type Arabidopsis thaliana was selected as the experimental plant and was planted at different Cd concentrations. MR2 and TS8 bacterial suspensions were sprayed onto the rhizospheric soil during the planting process. The initial Cd concentration of the bought soil was 14.17 mg/kg, which was used as the pot soil of the low-concentration Cd treatment group (LC). The concentration of soil Cd at high-concentration Cd treatment group (HC) were 200 mg/kg higher than that at LC group. Compared with the control group, MR2 suspension significantly promoted the growth of A. thaliana at both low and high concentrations, while TS8 strain and MR2_TS8 mixture only exhibited growth-promoting effect at high concentration. However, it was noteworthy that, TS8 suspension significantly reduced the Cd content in the underground parts of A. thaliana (60% and 59%), and significantly improved the Cd content in the aboveground parts of A. thaliana (234% and 35%) at both low and high concentrations. In addition, at low concentration, both single strain and mixed strains significantly improved the transformation from reducible Cd to acid-extractable Cd in soil, promoted Cd intake, and thereby reduced the total Cd content in soil. Therefore, the rational application of plant growth-promoting bacteria may improve crop yield and remediate Cd contamination in soil.


Subject(s)
Arabidopsis , Bacteria , Biodegradation, Environmental , Cadmium/pharmacology , Enterobacteriaceae , Klebsiella , Plant Roots/chemistry , Soil , Soil Pollutants
9.
Chinese Journal of Biotechnology ; (12): 343-358, 2022.
Article in Chinese | WPRIM | ID: wpr-927715

ABSTRACT

Three-amino acid loop extension (TALE) transcription factors play important roles in plant growth and cell differentiation. There are plenty of studies on TALE transcription factors in several model plants, but not in radish (Raphanus sativas). A genome-wide bioinformatics analysis identified 33 TALE family genes in the Xiang-Ya-Bai (XYB) radish, These genes, are distributed on nine chromosomes and all contain 4-6 exons. The 33 TALE genes in radish showed a co-linearity relationship with the 17 homologous genes in Arabidopsis thaliana. Moreover, a large number of stress response cis-elements were found in the promoter regions of these genes. Expression analysis showed that four genes in the BELL subfamily were highly expressed in roots, and two genes in the KNOX subfamily were highly expressed in shoots of bolting plants and callus. All radish TALE genes contain sequences encoding the conserved HOX domain, except for the gene RSA10037940, which is homologous to Arabidopsis KNATM. The deduced 3D structures of the TALE proteins irrespective of subtypes are highly similar. All the encoded proteins were weakly acidic and hydrophilic. The radish TALE gene family is relatively evolutionarily conserved, which was consistent with results from Arabidopsis, but quite different from that of rice. This study provides important clues for studying the biological functions of TALE transcription factors in radish.


Subject(s)
Amino Acids , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Raphanus/metabolism , Transcription Factors/metabolism
10.
Chinese Journal of Biotechnology ; (12): 34-49, 2022.
Article in Chinese | WPRIM | ID: wpr-927691

ABSTRACT

Plant adaptation to adverse environment depends on transmitting the external stress signals into internal signaling pathways, and thus forming a variety of stress response mechanisms during evolution. Brassinosteroids (BRs) is a steroid hormone and widely involved in plant growth, development and stress response. BR is perceived by cell surface receptors, including the receptor brassinosteroid-insensitive 1 (BRI1) and the co-receptor BRI1-associated-kinase 1 (BAK1), which in turn trigger a signaling cascade that leads to the inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Studies in the model plant Arabidopsis thaliana have shown that members of BR biosynthesis and signal transduction pathways, particularly protein kinase BIN2 and its downstream transcription factors BES1/BZR1, can be extensively regulated by a variety of environmental factors. In this paper, we summarize recent progresses on how BR biosynthesis and signal transduction are regulated by complex environmental factors, as well as how BR and environmental factors co-regulate crop agronomic traits, cold and salt stress responses.


Subject(s)
Arabidopsis/metabolism , Brassinosteroids/pharmacology , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological
11.
Braz. j. biol ; 81(2): 318-325, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1153356

ABSTRACT

CKB3 is a regulatory (beta) subunit of CK2. In this study Arabidopsis thaliana homozygous T-DNA mutant ckb3 was studied to understand the role of CKB3 in abscisic acid (ABA) signaling. The results shown: CKB3 was expressed in all organs and the highest expression in the seeds, followed by the root. During seed germination and root growth the ckb3 mutant showed reduced sensitivity to ABA. The ckb3 mutant had more stomatal opening and increased proline accumulation and leaf water loss. The expression levels of number of genes in the ABA regulatory network had changed. This study demonstrates that CKB3 is an ABA signaling-related gene and may play a positive role in ABA signaling.


CKB3 é uma subunidade reguladora (beta) de CK2. Neste estudo, o mutante homozigoto ckb3 de Arabidopsis thaliana foi estudado para entender o papel da CKB3 na sinalização de ácido abscísico (ABA). Os resultados apresentados: CKB3 foi expresso em todos os órgãos e a maior expressão nas sementes, seguida pela raiz. Durante a germinação das sementes e o crescimento radicular, o mutante ckb3 mostrou sensibilidade reduzida ao ABA. O mutante ckb3 teve mais abertura estomática e aumento do acúmulo de prolina e perda de água nas folhas. Os níveis de expressão do número de genes na rede reguladora da ABA haviam mudado. Este estudo demonstra que CKB3 é um gene relacionado à sinalização ABA e pode desempenhar um papel positivo na sinalização ABA.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Abscisic Acid , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds , Germination , Gene Expression Regulation, Plant/genetics , Mutation/genetics
12.
Braz. arch. biol. technol ; 64: e21200316, 2021. tab, graf
Article in English | LILACS | ID: biblio-1278451

ABSTRACT

Abstract To discover and isolate a glyphosate-resistant gene from Fragaria vesca through gene mining. An open reading frame (ORF) of 1563 bp encoding EPSPSwas amplified from Fragaria vesca (FvEPSPS). FvEPSPS (Genebank: XP004306932.1) encodes a polypeptide of 520 amino acids and it has hightly homologous with EPSPS from other plants. qRT-PCR analysis showed that the FvEPSPS was expressed extensively in all tissues including leaves, roots and stems, with higher expression in leaves. Furthermore, transgenic Arabidopsis Thaliana exhibited 10 mM glyphosate to resistance. Therefore, this research offers a new glyphosate-resistant gene for development of transgenic crops.


Subject(s)
Plants, Genetically Modified , Arabidopsis , Fragaria , Herbicides/adverse effects
13.
China Journal of Chinese Materia Medica ; (24): 4395-4402, 2021.
Article in Chinese | WPRIM | ID: wpr-888138

ABSTRACT

Stolon is an important organ for reproduction and regeneration of Amana edulis. Previous analysis of transcriptome showed that MYB was one of the most active transcription factor families during the development of A. edulis stolon. In order to study the possible role of MYB transcription factors in stolon development, the authors screened out an up-regulated MYB gene named AeMYB4 was by analyzing the expression profile of MYB transcription factors. In the present study, sequence analysis demonstrated that AeMYB4 contained an open reading frame of 756 bp encoding 251 amino acids, and domain analysis revealed that the predicted amino acids sequence contained two highly conserved SANT domains and binding sites for cold stress factor CBF. By multiple sequence alignment and phylogenetic analysis, it is indicated that AeMYB4 clustered with AtMYB15 from Arabidopsis thaliana, belonging to subgroup S2 of R2 R3-MYB. And most of the transcription factors in this subfamily are related to low temperature stress. The GFP-AeMYB4 fusion protein expression vector for subcellular localization was constructed and transferred into Agrobacterium tumefaciens to infect the leaves of Nicotiana benthamiana, and the results showed the protein was located in the nucleus. To investigate the transcriptional activation, the constructed pGBKT7-AeMYB4 fusion expression vector was transferred into Y2 H Gold yeast cells, which proved that AeMYB4 was a transcription activator with strong transcriptional activity. Real-time quantitative PCR was used to detect the expression of AeMYB4 gene in three different development stages of stolon and in leaves, flowers, and bulbs of A. edulis, which indicated that AeMYB4 transcription factor was tissue-specific in expression, mainly in the stolon development stage, and that the expression was the most active in the middle stage of stolon development, suggesting that AeMYB4 gene may play an important role in stolon development. This study contributes to the further research on the function of AeMYB4 transcription factor in stolon development of A. edulis.


Subject(s)
Humans , Amino Acid Sequence , Arabidopsis/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism
14.
Chinese Journal of Biotechnology ; (12): 2645-2657, 2021.
Article in Chinese | WPRIM | ID: wpr-887830

ABSTRACT

Lysine acetylation is one of the major post-translational modifications and plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for the removal of acetyl groups from the lysines of both histone and non-histone proteins. The RPD3 family is the most widely studied HDACs. This article summarizes the regulatory mechanisms of Arabidopsis RPD3 family in several growth and development processes, which provide a reference for studying the mechanisms of RPD3 family members in regulating plant development. Moreover, this review may provide ideas and clues for exploring the functions of other members of HDACs family.


Subject(s)
Arabidopsis/metabolism , Histone Deacetylases/metabolism , Histones , Plant Development/genetics
15.
Chinese Journal of Biotechnology ; (12): 4351-4362, 2021.
Article in Chinese | WPRIM | ID: wpr-921511

ABSTRACT

To explore the function of a heat shock transcription factor gene (HSFB1) and its promoter in Amorphophallus, a 1 365 bp DNA sequence was obtained by homologous cloning from Amorphophallus albus. The gene expression level of AaHSFB1 determined by qRT-PCR indicated that AaHSFB1 gene is more sensitive to heat stress. The expression level of AaHSFB1 in roots increased followed by a decrease upon heat treatment, and the highest expression level was observed after heat treatment for 1 h. The expression level of AaHSFB1 in leaves reached the highest after heat treatment for 12 h. The expression level in bulbs did not change greatly during the heat treatment. Subcellular localization analysis showed that AaHSFB1 protein was localized in the nucleus. A 1 509 bp DNA sequence which contains the AaHSFB1 promoter was obtained by FPNI-PCR method. Bioinformatics analysis showed that the promoter contained heat stress response elements HSE and a plurality of cis-acting elements related to plant development and stress response. A prAaHSFB1::GUS fusion expression vector was constructed to further analyze the function of AaHSFB1 promoter. The expression vector was transformed into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated method, and GUS staining analysis on transgenic plants after heat treatment was performed. The results showed that AaHSFB1 promoter had very high activity in the leaves. Therefore, we speculate that AaHSFB1 may play an important role in the stress resistance of A. albus, especially when encountering heat stress.


Subject(s)
Amorphophallus/metabolism , Arabidopsis/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
16.
Chinese Journal of Biotechnology ; (12): 4329-4341, 2021.
Article in Chinese | WPRIM | ID: wpr-921509

ABSTRACT

Dehydration-responsive element binding proteins (DREBs) are an important class of transcription factors related to plant stress tolerance. Ammopiptanthus mongolicus is an evergreen broadleaf shrub endemic to desert areas of northwest China, and it has a very high tolerance to harsh environments. In order to reveal the functions and mechanisms of the AmDREB1F gene from this species in enduring abiotic stresses, we performed subcellular localization test, expression pattern analysis, and stress tolerance evaluation of transgenic Arabidopsis harboring this gene. The protein encoded by AmDREB1F was localized in the nucleus. In laboratory-cultured A. mongolicus seedlings, the expression of AmDREB1F was induced significantly by cold and drought but very slightly by salt and heat stresses, and undetectable upon ABA treatment. In leaves of naturally growing shrubs in the wild, the expression levels of the AmDREB1F gene were much higher during the late autumn, winter and early spring than in other seasons. Moreover, the expression was abundant in roots and immature pods rather than other organs of the shrubs. Constitutive expression of AmDREB1F in Arabidopsis induced the expression of several DREB-regulated stress-responsive genes and improved the tolerance of transgenic lines to drought, high salinity and low temperature as well as oxidative stress. The constitutive expression also caused growth retardation of the transgenics, which could be eliminated by the application of gibberellin 3. Stress-inducible expression of AmDREB1F also enhanced the tolerance of transgenic Arabidopsis to all of the four stresses mentioned above, without affecting its growth and development. These results suggest that AmDREB1F gene may play positive regulatory roles in response to abiotic stresses through the ABA-independent signaling pathways.


Subject(s)
Arabidopsis/metabolism , Droughts , Ectopic Gene Expression , Fabaceae/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Stress, Physiological/genetics
17.
Chinese Journal of Biotechnology ; (12): 2991-3004, 2021.
Article in Chinese | WPRIM | ID: wpr-921401

ABSTRACT

Flowering is a critical transitional stage during plant growth and development, and is closely related to seed production and crop yield. The flowering transition is regulated by complex genetic networks, whereas many flowering-related genes generate multiple transcripts through alternative splicing to regulate flowering time. This paper summarizes the molecular mechanisms of alternative splicing in regulating plant flowering from several perspectives, future research directions are also envisioned.


Subject(s)
Alternative Splicing/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Flowers/genetics
18.
Chinese Journal of Biotechnology ; (12): 1324-1333, 2021.
Article in Chinese | WPRIM | ID: wpr-878634

ABSTRACT

Photoperiod plays an important role in transformation from vegetative growth to reproductive growth in plants. CONSTANS (CO), as a unique gene in the photoperiod pathway, responds to changes of day length to initiate flowering in the plant. In this study, the expression level of FaCONSTANS (FaCO) gene under long-day, short-day, continuous light and continuous darkness conditions was analyzed by real-time quantitative PCR. We constructed the over-expression vector p1300-FaCO and infected into Arabidopsis thaliana by Agrobacterium-mediated method. We constructed the silencing vector p1300-FaCO-RNAi and infected into Festuca arundinacea by Agrobacterium-mediated method. The expression of FaCO gene was regulated by photoperiod. The over-expression of FaCO promoted flowering in wild type of Arabidopsis thaliana under long day condition and rescued the late flowering phenotype in co-2 mutant of Arabidopsis thaliana. Silencing FaCO gene in Festuca arundinacea by RNAi showed late-flowering phenotype or always kept in the vegetative growth stage. Our understanding the function of FaCO in flowering regulation will help further understand biological function of this gene in Festuca arundinacea.


Subject(s)
Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Festuca/metabolism , Flowers/genetics , Gene Expression Regulation, Plant , Photoperiod
19.
Chinese Journal of Biotechnology ; (12): 1155-1167, 2021.
Article in Chinese | WPRIM | ID: wpr-878621

ABSTRACT

With the constant change of global climate, plants are often affected by multiple abiotic stresses such as heat stress, drought stress, cold stress and saline-alkali stress. Heat shock transcription factors (HSFs) are a class of transcription factors widely existing in plants to respond to a variety of abiotic stresses. In this article, we review and summarize the structure, signal regulation mechanism of HSFs and some research in plants like Arabidopsis thaliana, tomato, rice and soybean, to provide reference for further elucidating the role of HSFs in the stress regulation network.


Subject(s)
Arabidopsis/metabolism , Droughts , Gene Expression Regulation, Plant , Heat Shock Transcription Factors/genetics , Plant Proteins/genetics , Stress, Physiological , Transcription Factors/metabolism
20.
Electron. j. biotechnol ; 45: 10-18, May 15, 2020. tab, ilus, graf
Article in English | LILACS | ID: biblio-1177381

ABSTRACT

BACKGROUND: APETALA3 (AP3) has significant roles in petal and stamen development in accordance with the classical ABC model. RESULTS: The AP3 homolog, CDM19, from Chrysanthemum morifolium cv. Jinba was cloned and sequenced. Sequence and phylogenetic analyses revealed that CDM19 is of DEF/AP3 lineage possessing the characteristic MIKC-type II structure. Expression analysis showed that CDM19 was transcribed in petals and stamens of ray and disc florets with weak expression in the carpels. Ectopic expression of CDM19 in Arabidopsis wild-type background altered carpel development resulting in multi-carpel siliques. CDM19 could only partially rescue the Arabidopsis ap3­­3 mutant. CONCLUSIONS: Our results suggest that CDM19 may partially be involved in petal and stamen development in addition to having novel function in carpel development.


Subject(s)
Plant Proteins/physiology , Plant Proteins/genetics , Arabidopsis/growth & development , Chrysanthemum , Flowers/growth & development , Ectopic Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL